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SUMMARY

An alternative discretization of pressure-correction equations within pressure-correction schemes for the
solution of the incompressible Navier–Stokes equations is introduced, which improves the convergence
and robustness properties of such schemes for non-orthogonal grids. As against standard approaches,
where the non-orthogonal terms usually are just neglected, the approach allows for a simpli�cation of
the pressure-correction equation to correspond to 5-point or 7-point computational molecules in two or
three dimensions, respectively, but still incorporates the e�ects of non-orthogonality. As a result a wide
range (including rather high values) of underrelaxation factors can be used, resulting in an increased
overall performance of the underlying pressure-correction schemes. Within this context, a second issue
of the paper is the investigation of the accuracy to which the pressure-correction equation should be
solved in each pressure-correction iteration. The scheme is investigated for standard test cases and, in
order to show its applicability to practical �ow problems, for a more complex con�guration of a micro
heat exchanger. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: �nite-volume method; pressure-correction method (SIMPLE); non-orthogonal;
colocated grids

1. INTRODUCTION

The numerical simulation of incompressible �ows based on the Navier–Stokes equations re-
quires special attention for the coupling of pressure and velocity �elds. Pressure-correction
methods like the well-known SIMPLE algorithm of Patankar and Spalding [1] are frequently
employed to solve the corresponding system of discrete equations resulting from �nite-volume
or �nite-element discretization. The basic idea of these methods, which meanwhile exist in
a number of variants, is to solve �rst the momentum equations with an estimated pressure
�eld for a preliminary velocity and, afterwards, the mass conservation equation is employed
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to assemble an equation for a pressure-correction yielding corrections for the pressure and
the velocity to satisfy the mass conservation. This procedure is repeated until convergence is
achieved.
One crucial part of such methods is the pressure-correction equation. On orthogonal grids

together with an usual second-order discretization the structure of this equation corresponds
to 5-point or 7-point computational molecules in two or three dimensions, respectively. For
non-orthogonal grids the structure becomes more complex, e.g. a 9-point=19-point computa-
tional molecule in two=three dimensions. The storage and solution procedure for such kinds of
matrices is seen to be too complex or too expensive by many authors, especially for the three-
dimensional case. Therefore, it is common practice to simplify the equation by omitting the
e�ects of non-orthogonality entirely to obtain a 5-point or 7-point molecule again, see for ex-
ample References [2–4]. However, it can be shown that on highly non-orthogonal grids these
simpli�cations lead to deteriorated convergence behaviour of the overall pressure-correction
scheme. As a consequence one has to use rather small underrelaxation factors resulting in large
iteration numbers and high computational e�ort. For instance, for a two-dimensional set-up
Peri�c [5] has investigated the simpli�ed pressure-correction equation approach and found such
rather poor convergence and stability behaviour on severely non-orthogonal grids. Therefore,
he recommended to use the simpli�ed scheme on slightly non-orthogonal grids, because it
requires less memory and less computational e�ort compared to the full equation. For highly
non-orthogonal grids he proposed to employ the full equation, which, however, in particular
in three dimensions, is very expensive to be stored and solved. Cho and Chung [6] proposed a
way of incorporating e�ects of non-orthogonality in the pressure-correction equation without
extending the computational molecule. Unfortunately, the performance of their approach is
depending on an additional user de�ned parameter. Regarding the number of already existing
adjustable parameters in �uid �ow computations this is undesirable. Additionally, for orthog-
onal grids the scheme cannot compete with the simpli�ed method for certain combination of
underrelaxation parameters.
The main objective of the present paper is the formulation of a discrete pressure-correction

equation, which also is simpli�ed to 5-point or 7-point computational molecules, but still
incorporates the e�ects of non-orthogonality. Moreover, for orthogonal grids the formulation is
identical to the simpli�ed pressure-correction equation and, thus, having the same convergence
properties in this case. The key idea to achieve this, is the use of an alternative approximation
of pressure derivatives based on a multi-dimensional Taylor expansion as it was already
introduced by Lehnh�auser and Sch�afer [7] in the context of �ux interpolation on distorted grids.

2. GOVERNING EQUATIONS AND DISCRETIZATION

We consider a laminar steady �ow of an incompressible Newtonian �uid in an arbitrary
three-dimensional domain described by the well-known Navier–Stokes equations:
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Figure 1. Arbitrary hexagonal control volume (neighbouring points are
labelled according to the compass notation).

where ui are the velocity vector components with respect to the Cartesian co-ordinates xi, p
is the pressure, � is the kinematic viscosity and � is the density (for simplicity, � and � are
assumed to be constant).
In order to discretize the conservation Equations (1) and (2) a �nite-volume method for

general non-orthogonal grids is employed, which is described in detail in References [3, 8, 9].
Here we just recall some basics which will be necessary for the following considerations.
Integrating Equations (1) and (2) over an arbitrary hexahedral control volume (CV, see

Figure 1) and applying the Gaussian theorem yields:
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where the summation is performed over the six faces Sc of the hexagonal control volume
(c= e; w; n; s; t; b). The volume integral over the pressure term Sp

i is approximated by the
three-dimensional midpoint rule yielding

Sp
i ≈ 1

�

(
@p
@xi

)
P
�V (5)

where �V is the volume of the corresponding CV. The mass �uxes ṁc, the convective
�uxes FC

i; c and the di�usive �uxes FD
i; c are approximated for each face separately by the
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two-dimensional midpoint rule, which, e.g. for the east face, yields

ṁe ≈ (ui)eni�Se (6)

FC
i; e ≈ ṁe(ui)e (7)

FD
i; e ≈ �

((
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@xj

)
e

+
(
@uj
@xi

)
e

)
nj�Se (8)

where �Se denotes the area of the east face. Here and in the following, the overbar denotes
an appropriate interpolation of the cell face value by the nodal values.
A major concern of this paper is the derivative approximation on non-orthogonal and dis-

torted grids. Thus, we will discuss the discretization of the derivatives in the pressure term
(5) and the di�usive �uxes (8) separately in the next section. To proceed with the description
of the algorithm we consider that the discretized momentum equations can be written in the
following form:

aui
P ui; P +

∑
C

aui
C ui;C = bui (9)

where C=E;W;N; S; T; B denotes the midpoint of the neighbouring CVs. aui
P ; a

ui
C represent the

corresponding coe�cients and bui the source terms of the discrete ui-equation.
To solve the coupled system of discrete equations an iterative pressure-correction technique

of SIMPLE type (see Patankar and Spalding [1]) is employed. Here, we omit an extensive
description of the applied procedure which can be found in, e.g. Ferziger and Peri�c [10] and
provide an outline only.
The solution procedure consists of two main steps which makes one SIMPLE iteration. At

�rst, provisional velocity components u∗i are computed by evaluating the discrete momentum
equation (9) with an estimated pressure �eld p∗. Calculating the mass �uxes ṁ∗

c with these
velocities the continuity equation is not ful�lled but leaving an arti�cial mass source bm for
each CV:

bm=
∑
c
ṁ∗

c (u
∗
c ; v

∗
c ) (10)

Then corrections u′i and p′ to u∗i and p∗, respectively, are sought such that the corrected values
exactly ful�l the discrete continuity equation. Subtracting Equation (10) from Equation (3)
yields an equation for the mass �ux correction which is a function of the velocity corrections:∑

c
ṁ′

c(u
′
c; v

′
c)=−bm (11)

In the spirit of the SIMPLE algorithm from the momentum equations the following expressions
for the velocity corrections can be derived:

u′i; P=− �V
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P
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To determine the correction at the CV faces without introducing oscillations due to the
colocated grid arrangement the selective interpolation technique of Rhie and Chow [11] is
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employed, which reads:

u′i; e=−
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(13)

The appropriate approximation of the derivative yields the equation for the pressure correc-
tion p′. Again we refer to the next section.
For the sake of completeness we note that the arti�cial mass source bm is assembled using

the pressure weighted interpolation which is described in detail, for instance in Miller and
Schmidt [12].

3. DERIVATIVE APPROXIMATION

To �nalize the discretization we have to approximate derivatives at di�erent locations, namely
at the cell centre P (e.g. the pressure term (5)) or at the cell face centres e; w; n; s; t; b (e.g.
the di�usive �uxes (8) and the correction term in Equation (13)). In case of the cell centre
approximations a standard co-ordinate transformation scheme can be applied both e�ciently
and accurately as will be shown in the following. In case of the derivatives at a cell face
centre the co-ordinate transformation scheme introduces cell corner values, which have to be
interpolated. Thus, a second scheme for the approximation of the derivatives at cell faces is
considered in this paper, which is based on a multi-dimensional Taylor series expansion.

3.1. Co-ordinate transformation scheme (CTS)

The co-ordinate transformation scheme expresses derivatives in the Cartesian directions xi in
terms of the local co-ordinate system �xi:
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(14)

where �ij represents the cofactor of @xi=@ �xj in the Jacobian J =det(@xi=@ �xj) of the transfor-
mation xi → �xj.
To approximate the derivatives at the cell centre point P the auxiliary face centre points

e; w; n; s; t; b are employed due to the de�nition of the local co-ordinate system �j (see
Figure 1). Finally, the discrete version of Equation (14) for the centre point P reads:

(
@�
@xi

)
P
≈ �ji

P;CTS

JP;CTS
�j

P;CTS; i; j=1; 2; 3 (15)

with

�1P;CTS = (�e − �w)

�2P;CTS = (�n − �s)

�3P;CTS = (�t − �b)

�1iP;CTS = �ikl[(xk; n − xk; s)(xl; t − xl; b)]
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�2iP;CTS = �ikl[(xk; t − xk; b)(xl; e − xl;w)]

�3iP;CTS = �ikl[(xk; e − xk;w)(xl; n − xl; s)]

JP;CTS = (xi; e − xi;w)�1iP;CTS

The values of � at the cell face centre points are obtained by a linear interpolation between
the corresponding computational points, e.g. �e= �E�E + �P�P + O(	x2) with appropriate
interpolation factors �E and �P.
The order of the scheme is given by the leading term of the discretization error 	i;P;CTS

of the CTS approximation. The error can be determined by investigating the corresponding
Taylor series expansions around the cell centre point P for the cell face centre points, e.g.:

�A=�P + (xi;P − xi;A)
(
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+ O(	x3) (16)

with A= e; w; n; s; t; b. Thus, the error of the discretization for the derivative in xi-direction
reads:
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1

JP;CTS
[
ew�1iP;CTS + 
ns�2iP;CTS + 
tb�3iP;CTS] + O(	x2) (17)

with


ew =
1
2
[(xk; e − xk;P)(xl; e − xl;P)− (xk;w − xk;P)(xl;w − xl;P)]

(
@2�

@xk@xl

)
P


ns =
1
2
[(xk; n − xk;P)(xl; n − xl;P)− (xk; s − xk;P)(xl; s − xl;P)]

(
@2�

@xk@xl

)
P


tb =
1
2
[(xk; t − xk;P)(xl; t − xl;P)− (xk; b − xk;P)(xl; b − xl;P)]

(
@2�

@xk@xl

)
P

Due to the de�nition of a CV, the centre point P is located such that the distances between
e and w, n and s, t and b, respectively, are halved. Thus, the terms 
ew; 
ns; 
tb vanish and the
error always is of second-order.
Similarly the derivatives at the cell face centre points are approximated. The procedure is

presented for the east face only. The other faces can be treated accordingly. Figure 2 indicates
that the local co-ordinate system is de�ned by �i. The derivative @�=@�1 can be approximated
by using directly the computational points P and E, while for @�=@�2 and @�=@�3 the auxiliary
points ne; se; te; be have to be employed. Thus, one can approximate the derivatives at the east
face with the CTS scheme by(

@�
@xi

)
e
≈ �ije;CTS

Je;CTS
�j

e;CTS; i; j=1; 2; 3 (18)

where

�1e;CTS = (�E − �P)

�2e;CTS = (�ne − �se)
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Figure 2. Arbitrary east face with the computational points P; E and auxiliary points e; ne; se; te; be.

�3e;CTS = (�te − �be)

�1ie;CTS = �ikl[(xk; ne − xk; se)(xl; te − xl; be)]

�2ie;CTS = �ikl[(xk; te − xk; be)(xl;E − xl;P)]

�3ie;CTS = �ikl[(xk;E − xk;P)(xl; ne − xl; se)]

Je;CTS = (xi;E − xi;P)�1ie;CTS

The order of the scheme is given by the leading term of the truncation error 	i; e;CTS. For
the derivative in xi-direction it reads:

	i; e;CTS =
1

2Je;CTS
[
EP�1ie;CTS + 
ns�2ie;CTS + 
tb�3ie;CTS]
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Again we have 
ns= 
tb=0, due to the de�nition of the CV. Unfortunately, 
EP is not nec-
essarily zero. Thus, the scheme formally is only �rst-order accurate. However, Ferziger and
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Figure 3. Interpolation of corner point values.

Peri�c [10] have shown that the �rst-order term is reduced by a factor of four or more when
re�ning the grid spacing properly. Thus, in practice, second-order is achieved.
Finally, the values of � at the cell edge centre points ne; se; te; be are approximated by

bilinear interpolation. For instance, to obtain the value of � at the auxiliary point ne one in-
terpolates between P; E and N;NE �rst. A second interpolation then yields the sought quantity
(see Figure 3). The �rst step again corresponds to the above mentioned standard interpolation,
while the second step is never applied elsewhere. Thus, an applicable practice is to use the
corresponding interpolation factors at the centre node P. On distorted grids this interpolation
practice introduces additional errors of order O(	x) which in�uence on the solution depends
on the distortion of the grid.
The co-ordinate transformation scheme is an appropriate choice for the approximation of

derivatives at cell centre points. For derivatives at face centre points this scheme shows
some unwanted features such as reduced accuracy due to the interpolation. Especially when
treating the pressure-correction equation there are further drawbacks. We return to this issue
in Section 3.3. Before, we introduce an alternative discretization for derivatives at cell face
centre points.

3.2. Derivative approximation based on multi dimensional Taylor series expansion
(DABT)

A Taylor series expansion for an arbitrary point A around e in three dimensions reads:

�A=�e + (xi; e − xi;A)
(
@�
@xi

)
e
+
1
2
(xi; e − xi;A)(xj; e − xj;A)

(
@2�
@xi@xj

)
e

+ O(	x3i ) (20)

Obviously, on the right-hand side the sought derivatives appear as unknowns. Neglecting the
second- and higher-order terms the cell face centre value �e appears as a fourth
unknown. On the left-hand side of Equation (20) we have the value of � for an arbitrary
point A in the vicinity of e. Thus, we can chose for A the adjacent computational points
A=P; E; N; S; T; B; NE; SE; TE; BE, respectively. To determine the four unknowns it would be
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su�cient to employ four nodes only, but for symmetry reasons we include ten nodes in the
approximation. By simple algebra one obtains for every derivative an equation of the form:

(
@�
@xi

)
e
≈ �ji

e;DABT

Je;DABT
�j

e;DABT; i; j=1; 2; 3 (21)

with

�1e;DABT = (�E − �P)

�2e;DABT = (�N − �S + �NE − �SE)

�3e;DABT = (�T − �B + �TE − �BE)

�1ie;DABT = �ikl[(xk;N − xk; S + xk;NE − xk; SE)(xl; T − xl;B + xl; TE − xl;BE)]

�2ie;DABT = �ikl[(xk; T − xk;B + xk; TE − xk;BE)(xl;E − xl;P)]

�3ie;DABT = �ikl[(xk;E − xk;P)(xl;N − xl; S + xl;NE − xl; SE)]

Je;DABT = (xi;E − xi;P)�1ie;DABT

Obviously, the structure of the DABT scheme is very similar to that of the CTS scheme.
However, the coe�cients �ji and �j di�er and, in particular, no cell face edge points are
introduced in the DABT scheme. The order of the scheme is given by the truncation error
	i;DABT. For the derivative in xi-direction it reads:
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The leading term in Equation (22) is �rst-order and very similar to the truncation error of
the CTS scheme. Thus, following Ferziger and Peri�c [10], it is straightforward to show that
the �rst-order term is reduced by a factor of four or more with grid re�nement. However, the
DABT scheme does not incorporate any interpolation thus avoiding additional error terms.
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Note that the same derivative approximation has already been introduced by Moulinec
and Wesseling [13]. Despite following a di�erent derivation they found the same formula. In
their studies they applied the scheme to the derivatives in the di�usive �ux and found superior
accuracy compared to the CTS scheme. Further, the derivative approximation can be employed
together with the Taylor series expansion to design a multi-dimensional interpolation formula
for severely distorted grids as presented in Lehnh�auser and Sch�afer [7].

3.3. Discretization of the pressure-correction equation

The derivatives in the pressure-correction equation are approximated either by the CTS or the
DABT scheme to yield a discrete equation of the following general form:

aPp′
P +

∑
C

aCp′
C =−bm (23)

For a detailed derivation of the coe�cients in Equation (23) we start with the equation for
the mass �ux correction, e.g. for the east face where we substitute the velocity corrections
u′i; e by Equation (13):

ṁ′
e= u′i; eni�Se=−

(
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�aui

P

)
e

(
@p′

@xi

)
e
ni�Se (24)

Using the CTS formula to approximate the derivative of the pressure correction yields:

ṁ′
e=−(p′

E − p′
P)�

1
CTS − (p′
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2
CTS − (p′

te − p′
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3
CTS (25)

where the factors � are given by:

�j
CTS =

(
�V
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P

)
e

�ji
e;CTS

Je;CTS
�Seni

The values of p′ at the corner points can be expressed by the cell centre values using the
above mentioned twofold linear interpolation, e.g. for p′

ne and p′
se:

p′
ne = (1−  1)[(1−  2)p′

P +  2p′
E] +  1[(1−  3)p′

N +  3p′
NE]

p′
se = (1−  4)[(1−  5)p′

S +  5p′
SE] +  4[(1−  2)p′

P +  2p′
E]

with appropriate interpolation factors  i ∈ [0; 1]. Thus, one can write

p′
ne − p′

se =  1(1−  3)p′
N +  1 3p′

NE

− (1−  4)(1−  5)p′
S + (1−  4) 5p′

SE

+(1−  2)(1−  1 −  4)p′
P +  2(1−  1 −  4)p′

E

In principle one can now evaluate the coe�cients aC in Equation (23) for the CTS scheme.
Nevertheless, a common simpli�cation is to neglect entirely all contributions due to non-
orthogonality, e.g. to neglect the contributions of the corner points. This is justi�ed as long as
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the procedure converges since all corrections vanish in state of convergence anyway. More-
over, that implies that the �nal solution is not altered by this simpli�cation. Eventually, one
can determine the corresponding matrix contribution for the east face:

ae
P= �1CTS; ae

E =−�1CTS; ae
N =0; ae

S =0; ae
T =0; ae

B=0

Similarly one can determine the contributions of the other faces. The overall entries are
determined by the sum of the corresponding contributions of all faces. In the following we
will refer to this approach as the simpli�ed pressure-correction equation (SPC).
Employing the DABT scheme the starting point is again Equation (24). The substitution of

the derivatives yields:

ṁ′
e =−(p′
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P)�

1
DABT − (p′

NE − p′
SE + p′

N − p′
S)�

2
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− (p′
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B)�
3
DABT (26)

where the factors � are given by
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Obviously no face corner point values appear in Equation (26). Thus, no interpolation is
required and one can determine the matrix entries for the east face directly:

ae
P=�1DABT; ae

E =−�1DABT
ae
N=−�2DABT; ae

NE=−�2DABT
ae
S=�2DABT; ae

SE =�2DABT
ae
T=−�3DABT ae

TE =−�3DABT
ae
B=�3DABT; ae

BE=�3DABT

Again, the overall entries are determined by the sum of the corresponding contributions of all
faces.
Obviously, the contribution of the corner neighbours cannot be treated implicitly, when one

likes to have a restriction to the 7-stencil discretization. An explicit treatment when assem-
bling the pressure-correction equation is also impossible, since there are no reasonable values
for the pressure corrections. However, such values are available when the current pressure-
correction equation is solved approximately by the iterative solver. Thus, a possibility is to
interrupt the solver and to use the current values for the pressure correction to treat the corner
neighbour contributions explicitly following the ideas of deferred correction-approaches. After
updating the source terms correspondingly the solution procedure can be continued. Again this
is justi�ed as long as the procedure converges (see above).
Treating terms explicitly is another way of simplifying the pressure-correction equation. But

in contrast to the SPC approach no terms are neglected. Thus, in the following we will refer
to this approach as the (semi-)full pressure-correction equation (FPC). Observe that in case
of orthogonal grids the FPC and SPC approaches are identical.
Obviously, the coe�cient matrices of both methods join some common features, while they

also di�er in some important respects. Firstly, both methods produce a matrix which consists
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of 7 diagonals. Furthermore, it is guaranteed that the centre coe�cient aP is equal to the
negative sum of its neighbour coe�cients which can be exploited in the computer code. On
the other hand, all o�-diagonal entries are negative in case of the CTS discretization while
using DABT this cannot be guaranteed. Since this feature of a matrix is essential to apply
an iterative solver e�ciently and robustly we consider a cut-o� here, e.g. all positive entries
are clipped to zero, which again does not in�uence the converged solution since a correction
equation is treated. To keep the row sum property of the matrix the clipped values are lumped
to the main diagonal. However, it can be expected that the pressure-correction equation using
the DABT discretization will be more challenging to the iterative solver compared to the CTS
scheme.

4. NUMERICAL RESULTS

The numerical experiments intend to demonstrate the superiority of the FPC compared to the
SPC scheme. Beside that, a second issue is the investigation of the solver accuracy for the
pressure-correction equation and its in�uence on the convergence and robustness behaviour of
the underlying pressure-correction method. Since we expect no in�uence from the dimension-
ality of the �ow problem both investigations are carried out for the lid driven cavity problem.
Though this two-dimensional test case is rather academic, it suits best for our purpose since
it emphasizes the problems occurring in practical con�gurations. To show the applicability
of the �ndings obtained for the test case to more complex con�guration the �ow through a
micro heat exchanger is also investigated.
Beside the parameters which are varied for the di�erent experiments some are kept con-

stant for all computations. These are the overall convergence limit and the settings for the
linear system solver, to mention the most important. In any case the calculation is termi-
nated if the normed residual of every considered equation falls below the convergence limit
of ”=1× 10−4. This implies that the divergence of the �nal velocity �eld is at least of the
same order of magnitude. For the solution of the linear system of equations we employ the
strongly implicit method (SIP) proposed by Stone [14] for the momentum as well as for
the pressure-correction equations. The user supplied parameter for this method is taken to be
�SIP = 0:5.

4.1. Lid driven cavity

For the basic investigations of the simpli�ed and the full pressure-correction equations we �rst
consider the two-dimensional �ow in a lid driven cavity. To show the in�uence of a skewed
mesh we investigate two geometrical set-ups shown in Figure 4. The Reynolds number is
taken to be Re= uL=�=100. The spatial discretization consists of four successively re�ned
grids with 10× 10 CV on the coarsest and 80× 80 CV on the �nest grid. This test case
was also considered by Peri�c [5], where he investigated the performance of a fully implicitly
treated pressure-correction equation.

4.1.1. Investigation of underrelaxation parameters. In this section the in�uence of the un-
derrelaxation parameter is investigated. To do so all other in�uencing parameters are kept
constant. To be more precise the solution procedure for the correction equation is terminated
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Figure 4. Geometrical con�guration of the lid driven cavity problem with indicated grid.
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Figure 5. In�uence of underrelaxation factors on the convergence be-
haviour for the 90◦- (left) and 30◦-cavity (right) using the simpli�ed and

full pressure-correction equation on a grid with 40× 40 CV.

either if the sum of its absolute residual falls by a factor of 5 compared to the one of the
�rst iteration or the number of iterations exceeds the limit of 20 which are a standard settings
to our knowledge. Since the pressure-correction equation converges very slowly the accu-
racy limit is reached rarely. Especially, for the computations presented in this section all 20
iterations are spent in each SIMPLE iteration.
We start with the 90◦-cavity where both the SPC and FPC approaches yield identical

formulae. The employed computational grid is orthogonal and equidistant in both directions.
Thus, one expects that the solution procedure works the best concerning the e�ciency and
robustness compared to other geometrical con�gurations. The picture on the left-hand side
of Figure 5 indicates the combinations of underrelaxation factors which lead to a converging
SIMPLE procedure. Apparently, a broad range of combinations can be used. Concerning the
30◦-cavity (right-hand side of Figure 5) the region of possible combinations of underrelaxation
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Figure 6. Dependency of the number of SIMPLE iteration on the underrelaxation factors and the
pressure-correction scheme for the 30◦-cavity on the grid with 80× 80 CV.

factors is reduced remarkably when using the SPC scheme. The use of the FPC scheme allows
to use a much broader range, which indicates that the scheme is signi�cantly more robust
than the simpli�ed equation. The region of convergence is identical to the one found in
case of the 90◦-cavity which shows that the FPC approach is capable of treating the cross
derivative terms correctly. To investigate the e�ciency of both methods a comparison of the
number of SIMPLE iterations is presented which is directly connected to the CPU time since
in each SIMPLE iteration a �xed number of inner iterations are applied. For the sake of
brevity only the most distinctive results are presented. Figure 6 shows the dependency of
the underrelaxation factor for the momentum equations and pressure (�u; v; �p) on the number
of SIMPLE iterations. In any case the number of iterations is reduced remarkably when
increasing �u; v and keeping �p constant whereas increasing �p with constant �u; v does not
have any obvious e�ect. Nevertheless, increasing �p bounds the maximal possible value of
�u; v more and more. In case of SPC the limitation is more restrictive than in case of FPC.
In case of convergence and constant �u; v the SPC and the FPC approaches do not di�er

remarkably. However, the FPC method allows to use combinations of rather high under-
relaxation factors, whereas the SPC approach diverges with such values. Thus, the overall
minimum of iterations for FPC is signi�cantly lower compared to the SPC approach. For this
test case a reduction of SIMPLE iterations by 35% was realized when comparing SPC and
FPC; both with the optimal combination of underrelaxation factors. The computational time is
not reduced that much since it is a little more expensive to assemble the pressure-correction
equation in FPC. Nevertheless, the reduction in computational time is still more than 30%.

4.1.2. Investigation of solver accuracy. Besides the underrelaxation factors other parameters
in the SIMPLE algorithm in�uence the robustness and e�ciency of the method. An interesting
point is how exactly the pressure-correction equation should be solved. In contrast to the
momentum equations the pressure-correction equation is rather di�cult to solve because of its
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Figure 7. In�uence of the stopping criterion of the linear system solver for the pressure-correction
equation on the number of SIMPLE iteration and the CPU time for the 90◦-cavity.

purely di�usive nature (Poisson equation with Neumann boundary conditions). On the other
hand one is not interested in the exact solution of the current correction equation in every
SIMPLE iteration, since the momentum equations have to be revisited anyway. Naturally,
employing approximate pressure corrections does not guarantee that the divergence of the
velocity �eld for every computational point is zero after each SIMPLE iteration. Nevertheless,
if the overall method converges the divergence of the velocity tends towards zero.
In the preceding section we required that the absolute residual falls below 20% of the one

of the �rst inner iteration or that 20 sweeps of the iterative solver are applied at most. Here,
we will consider stopping criteria from 2 to 98% indicated by the parameter �p ∈ [0:02; 0:98]
without limiting the number of SIP iterations. The underrelaxation factor �p=0:2 is kept con-
stant while �u; v is varied in the range [0:5; 0:9]. In Figure 7 the number of SIMPLE iterations
and CPU times are plotted over �p for the 90◦-cavity. Obviously, computing the pressure cor-
rection very precisely or not does not have a big in�uence on the number of outer iterations.
Since only a few iterations of the SIP solver are needed to compute a rough approximation,
the computational time decreases when increasing �p. This e�ect is not depending on the un-
derrelaxation factor �u; v. Nevertheless the number of SIMPLE iterations and the computational
time can be reduced by choosing �u; v close to the limit of divergence of the overall method.
Figure 8 shows the corresponding plots for the 30◦-cavity using the SPC approach. For

�u; v=0:5 the situation compared to the 90◦-cavity does not change signi�cantly. Still the
number of SIMPLE iterations is not a�ected by �p unless choosing very high values. Increasing
the underrelaxation factor for the velocities, a lower bound for �p arises which is approximately
0.1 for �u; v=0:7. For �u; v=0:9 no computation converges at all.
Finally, Figure 9 shows the corresponding plots for the 30◦-cavity using the FPC approach.

The overall situation is similar to the SPC scheme. Again a lower bound for the stopping
criterion is occurring. However, compared to the SPC approach the bound arises for higher
underrelaxation parameters. Generally, the FPC method permits higher values for �u; v and,
therefore, one obtains faster convergence.
An interesting issue of the computations of the 30◦-cavity is that there exist a lower bound

for �p. This can be explained by the simpli�cations in the SPC as well as the FPC approaches.
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Figure 8. In�uence of the stopping criterion of the linear system solver
for the pressure-correction equation on the number of SIMPLE iteration

and the CPU time for the 30◦-cavity using the SPC scheme.
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Figure 9. In�uence of the stopping criterion of the linear system solver
for the pressure-correction equation on the number of SIMPLE iteration

and the CPU time for the 30◦-cavity using the FPC scheme.

Although neglecting parts in the pressure-correction equation (SPC=FPC) or treating them
explicitly (FPC) has no in�uence on the converged solution, it alters the pressure-correction
equation of each SIMPLE iteration. Thus, the exact solution of this system does not ful�l the
full pressure-correction equation (without any simpli�cation). Consequently, if the di�erence
between the obtained and the sought solution is too big the overall method is diverging.
Naturally, this di�erence is depending on the applied simpli�cation and the non-orthogonality
of the grid.
The numerical experiments suggest that a kind of stabilization is introduced by solving the

pressure-correction equation only roughly. A possible explanation for this behaviour is that
the initial guess for the correction is always the zero �eld. Thus, after a few iterations of the
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Figure 10. Geometrical con�guration and a section of employed multi-block
structured grid for the micro heat exchanger.

SIP solver the pressure-correction �eld will be not too far away from the initial estimate. If
this correction is already a fairly good approximation of the pressure correction of the full
correction equation the method converges. After some SIMPLE iterations the in�uence of the
neglected parts in the simpli�ed pressure-correction equations decreases and the calculated
pressure correction becomes better and better.
The experiments also reveal that it is not necessary to compute the pressure correction very

precisely concerning the e�ciency of the scheme. In all investigated cases it is su�cient to
reduce the absolute residual by only 2% (�p=0:98) to obtain a converging method. Using
such high values for �p reduces the number of SIP iterations signi�cantly. Since the number
of SIMPLE iterations is barely a�ected, the fastest computations are obtained with stopping
criterion �p ≈ 0:9 which is far away from the recommended standard value of 0.2. Of course,
the optimal value of �p will be problem dependent.

4.2. Micro heat exchanger

Of course, the lid driven cavity considered in the previous sections is a rather academic test
case representing hardly any practical con�guration. In practice, the mesh will consist of cells
with widely varying shapes and internal angles depending on the set of given boundaries. As an
example of such a con�guration the geometrical set-up of a heat exchanger and the associated
structured grid is presented in Figure 10 (most of the numerical grid in the area of in�ow
and out�ow has been clipped in the �gure yielding a detailed view on the exchanger itself).
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Figure 11. Visualization of the �ow (streamlines) and temperature �eld (isothermal) of the micro heat
exchanger for three Reynolds numbers. Top: Re=0:1; Centre: Re=1; Bottom: Re=10.

Obviously, one can construct H-type grids for the in�ow and out�ow region. Because of the
rectangular boundaries in the in�ow and out�ow area the grid cells are orthogonal. However,
in the exchanger chamber O-type grids are employed since the inner circular boundaries of
the tubes have to be approximated well. Due to the outer rectangular boundaries the O-type
grids are deformed such that internal angles from 45◦ to 130◦ appear. Nevertheless, the grid
quality can be considered as rather good due to grid line smoothing. Four successively re�ned
grids are employed with 552 CV on the coarsest and 35 328 CV on the �nest mesh.
The geometrical set-up used in the numerical experiments is de�ned by the channel height

h=0:001 m, the tube diameter D= h, the chamber lengths L=8h and the chamber height
H =4h. The �uid is considered to be water. The dependency of the material properties on
the temperature is neglected, since they will not in�uence the performance of the di�erent
pressure-correction schemes. Thus, the density and the viscosity are taken to be constant.
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Table I. Number of SIMPLE iterations for the micro heat exchanger at di�erent Reynolds numbers and
for di�erent grid spacings.

CV Re=0:1 Re=1 Re=10

SPC FPC FPC 2 SPC FPC FPC 2 SPC FPC FPC 2

2208 134 133 265 130 130 288 100 108 255
8832 558 550 324 322 316 319 194 198 188
35328 2056 1120 439 909 504 497 538 436 446

In the numerical experiments three di�erent Reynolds numbers Re= huin=�water = 10; 1; 0:1 in
the laminar regime are investigated, depending on the inlet (block) velocities uin = 0:01; 0:001;
0:0001 m=s with the kinematic viscosity �water = 1× 10−6 m2=s. On all outer walls a constant
temperature of T =293K is prescribed whereas the inner walls possess a constant temperature
of T =393 K. E�ects of buoyancy are modelled by the Boussinesq approximation. Although
this is physically not valid for this temperature regime, the performance of the schemes to be
investigated will not be a�ected.
To give a brief overview of the �ow phenomena appearing in the exchanger chamber

Figure 11 shows the streamlines and the temperature �eld for the di�erent Reynolds numbers.
Obviously, in case of Re=0:1 the �ow is mainly driven by e�ects of buoyancy, whereas in
case of Re=10 it is dominated by convection.
By transferring some of the �ndings of the previous section not all combinations of numer-

ical parameters were investigated for the micro heat exchanger. First of all the SPC approach
together with the standard values for the number of sweeps for the pressure-correction equa-
tion (20) and accuracy (�p=0:2) is applied. 3 iterations of the linear system solver are applied
on the momentum equations and 5 on the energy equation without any accuracy criterion,
i.e. 31 sweeps are applied in every SIMPLE iteration at most. The method also converges
with underrelaxation parameters �u; v=0:9 and �p=0:2. Because lower values for �u; v do not
improve the behaviour of the scheme, results are presented only for this combination of un-
derrelaxation factors. For comparison, the FPC method is applied with the same numerical
parameters. Additionally, the FPC approach is also tested with a solver accuracy of �p=0:8
(FPC 2).
In Table I the number of SIMPLE iterations for the three investigated schemes for every

Reynolds number are summarized. Obviously, both the SPC and FPC yield more or less the
same results for the coarser grids. However, on �ner grids the FPC needs fewer SIMPLE
iterations compared to the SPC method. Especially for Re=0:1 the di�erence is signi�cant.
The FPC 2 method, which solves the pressure-correction equation only very roughly, cannot
compete with the other two methods on the coarse grids. Nevertheless, it pro�ts from grid
re�nement and is equally good or even better on the �ner grids.
To obtain a reasonable rating of the three investigated schemes it is not su�cient to consider

only the number of SIMPLE iterations, since the main objective is the computing time which
also depends on the number of sweeps applied in each outer iteration. Thus, the CPU time
in seconds are compared in Table II. Obviously, both FPC approaches yield faster algorithms
than the SPC approach. However, the di�erence is smaller compared to the number of outer
iterations because more sweeps have to be applied to solve the pressure-correction equation
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Table II. Computational time in seconds for the micro heat exchanger at di�erent Reynolds numbers
and for di�erent grid spacings.

CV Re=0:1 Re=1 Re=10

SPC FPC FPC 2 SPC FPC FPC 2 SPC FPC FPC 2

2208 5:1× 100 5:5× 100 8:3× 100 4:7× 100 5:3× 100 9:3× 100 3:7× 100 4:0× 100 8:8× 100
8832 1:0× 102 1:1× 102 5:2× 101 6:0× 101 6:4× 101 5:4× 101 3:9× 101 3:6× 101 3:6× 101
35328 1:5× 103 8:7× 102 3:1× 102 6:3× 102 4:0× 102 3:7× 102 4:0× 102 3:1× 102 3:2× 102

in case of the FPC approach. An additional acceleration can be achieved by raising �p as the
results for the FPC2 method indicate. In general, the positive e�ects of the FPC approaches
against SPC are stronger for low Reynolds numbers.

5. CONCLUSIONS

Simpli�cations of the pressure-correction equation to obtain a sparser matrix a�ects the ef-
�ciency and robustness features of pressure-correction methods. To reduce these e�ects an
alternative discretization of the pressure-correction equation is introduced with which it is
straightforward to consider parts of the cross derivative terms implicitly instead of neglecting
them completely. The numerical experiments for cavity �ows show that this approach is capa-
ble of yielding a robust and e�cient correction method even for highly skewed con�gurations.
Compared to the standard SPC approach the increased e�ort in assembling and solving the
pressure-correction equation is repaid by a signi�cantly reduced number of SIMPLE iterations
and, therefore, a reduced computational time.
Considering the accuracy of the computed pressure correction in each SIMPLE iteration,

the numerical experiments clearly show that it is not necessary to solve the pressure correction
very accurately neither for robustness nor for e�ciency of the scheme. For the investigated
test case it was su�cient to reduce the absolute residual by only a few percent to obtain
a converging procedure. Additionally, the number of SIMPLE iterations does not increase
tremendously when using such high stopping criteria. Because of the reduced number of SIP
iterations, the fastest computations are obtained with values �p¿0:7.
Contrary to the lid driven cavity the grid for the micro heat exchanger consists of cells

with a variety of di�erent shapes. In this case the di�erences in performance between the
proposed schemes and the standard scheme are not that distinct. Especially, the robustness
of the investigated schemes does not depend that strongly on the underrelaxation parame-
ters. Nevertheless, concerning the e�ciency, the FPC approaches yield a higher convergence
rate on the �ner grid levels and therefore a reduced overall computing time for any investi-
gated Reynolds number, which, however, in�uences the e�ciency distinctly as the numerical
experiments have shown.
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